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Abstract 

This paper discusses the assumptions required by the item response theory (IRT) true-score 

equating method (with Stocking & Lord, 1983; scaling approach), which is commonly used in 

the nonequivalent groups with an anchor data-collection design. More precisely, this paper 

investigates the assumptions made at each step by the IRT approach to calibrating items and 

equating tests, and discusses the approaches that one might take for checking whether these 

assumptions are met for a particular data set. We investigated two types of tests: tests that consist 

of multiple-choice items only, and tests that consist of both multiple-choice and free-response 

items. Real data from the AP® Calculus AB exam are used to illustrate the application of the IRT 

true-score equating method as well as for the comparisons. 

Key words: Population sensitivity, test equating, item response theory (IRT), IRT true-score 

equating method, observed-score equating methods, 3PL 
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Introduction  

Test equating methods are used to produce scores that are exchangeable across different 

test forms. Item response theory (IRT; Cook & Petersen, 1987; Hambleton, Swaminathan, & 

Rogers, 1991; Lord, 1980; Petersen, Cook, & Stocking, 1983; Petersen, Kolen, & Hoover, 1989; 

Thissen, Wainer, & Wang 1994; and many others) has provided alternative ways to approach test 

equating.  

This paper discusses the assumptions required by the IRT true-score equating method 

(with Stocking & Lord, 1983, scaling approach) that is commonly used in the nonequivalent 

groups with an anchor (NEAT) data-collection design. This study represents the first set of 

investigations we did in the context of a larger study that focused on analyzing the population 

sensitivity of the IRT equating functions (von Davier & Wilson, in press).  

The goals of this paper are to: 

1. investigate the assumptions made at each step of the IRT approach to calibrating 

items and equating tests with multiple-choice (MC) items only versus tests with both 

MC and free-response (FR) items 

2. discuss the assumptions made by the observed-score equating methods used in this 

study 

3. illustrate the steps we took to check the IRT assumptions 

4. compare the equating results obtained by using the IRT true-score equating method 

with the results obtained by the traditional observed-score equating methods (only for 

the MC tests) 

Real data from the AP® Calculus AB exam were used to illustrate both the new method 

and the comparisons. 

Notations, Assumptions, Models, and Methods 

In this section, we introduce our notation and explicitly present the assumptions that 

underlie the data-collection design, the IRT model, and the equating methods. We also describe 

the particular IRT models used in this study.  

In the NEAT design, X and Y are the operational test forms given to two samples from 

the two test administrations (populations) P and Q, respectively; and V is a set of common items, 
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the anchor test, given to both samples from P and Q. The anchor test score, V, can be either a 

part of both X and Y (the internal anchor case) or a separate test (the external anchor case). The 

subscripts P and Q will indicate the populations.  

The data structure for the NEAT design is illustrated in Table 1 (see also von Davier, 

Holland, & Thayer, 2004a). 

Table 1  

Description of the Data-Collection Design 

 X V Y  

P a a a X, V observed on P 

Q  a a Y, V observed on Q 

Note that Table 1 describes the data-collection procedure and does not refer to the tests 

scores to be used in the observed-score equating.  

The analysis of the NEAT design usually makes two assumptions, which we combined 

into Assumption 1 (see also von Davier et al., 2004a). 

Assumption 1. There are two populations of examinees, P and Q, who can each take one 

of the tests and the anchor test. Two samples are independently and randomly drawn from P and 

Q, respectively.  

The usual IRT assumptions for fitting IRT models and for calibrating items from the tests 

and the anchor are presented in Assumption 2. 

Assumption 2. We assume that the tests to be equated (X and Y) and the anchor (V) are 

unidimensional and measure the same construct. For all items in these tests, the 

unidimensionality, local independence, and monotonicity assumptions hold (see Hambleton et 

al., 1991, for example).  

Hence, IRT models rely on the assumptions of monotonicity, unidimensionality, and 

local independence at the item level; these models express the probability of a response, zni, of a 

given person, n (n = 1, … , N), to a given item, i (i = 1, … , I), as a function, f, of the person’s 

ability (latent), θn, and a possibly vector-valued item parameter, βi; for example: 
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Pni = P(X = z ni) = f(zni, θn, βi). 

In the case of the well-known three-parameter logistic (3PL) model (Lord & Novick, 1968), the 

vector βi consists of the slope, the difficulty, and the guessing parameter; that is: βi t = (ai, bi, ci). 

The 3PL model, which serves as the standard example of an item response model (IRM) 

in this paper, is given by  

P (zni = 1 | θn, ai, bi, ci) = ci + (1 - ci) logit-1[ai (θn - bi )],   (1) 

where zni denotes the answer of the person n to the item j, logit-1(·) = exp(·) / [1 + exp(·)], and a’s, 

b’s, and c’s are the item parameters, θ is the person parameter (ability or competency of interest), 

and P (zni = 1 | θn, ai, bi, ci) is the conditional probability of a correct answer of the person n to 

the item i (see Hambleton et al., 1991; or Lord, 1980, for details). 

The generalized partial-credit model (GPCM; Muraki & Bock, 1997) for the polytomous 

items (with m + 1 categories, for example) is based on the assumption that each probability of 

choosing the kth category over the (k-1)th category follows a dichotomous model (with k between 

0 and m+1):  

j
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where bi0 = 0 (arbitrarily fixed to 0). The threshold parameters in the partial-credit model, bik, are 

the intersection points between the probability curves Pnik and Pnik-1 (see Muraki & Bock, 1997). 

The GPCM is the item response model used to fit the data containing the FR items in this 

study.  

Table 1 shows that in the NEAT design X is not observed in the population Q, and Y is 

not observed in the population P. To overcome this feature, all linking methods developed for 

the NEAT design (both observed-score and IRT methods, which are also called true-score 

methods) must make additional assumptions that do not arise in the other linking designs. The 

assumption that the IRT models make for the NEAT design is given in Assumption 3. 

Assumption 3. If the model fits the data in each of the (two) populations, then the item 

parameters of the common items are population invariant (up to a linear transformation). 
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If the IRT calibration were to be carried out separately on the two samples from the two 

different populations P and Q, two sets of parameter estimates for the anchor test would be 

obtained. All IRT models have an intrinsic lack of identifiability of the item and person 

parameters that is usually addressed by imposing some restrictions on the item or person 

parameters (there are various ways to implement restrictions, and consequently different 

software use different approaches). This leads to a need for placing the item parameters on the 

same scale even in the absence of equating. In other words, even if the same test instrument 

would have been given to the two groups and if the calibration was done separately in the two 

groups then, the item parameters still need to be placed on the same scale by some sorts of linear 

transformations. Hence, for scaling and equating purposes in a NEAT design and assuming that 

Assumption 3 holds, the two separate parameter estimates of the anchor in the two groups need 

to be placed on the same scale. There are various methods for the scale transformation: the 

mean-mean, mean-sigma methods, or the characteristic curve methods such as the Stocking and 

Lord method (1983) and the Haebara method (1980). 

In this study we use the 3PL model for MC items and the generalized partial-credit model 

for the FR items. The characteristic curve method (Stocking & Lord, 1983) is used to place the 

separately estimated parameters onto a common scale. Next, the true-score equating method is 

used to obtain equivalent scores on X and Y (see Kolen & Brennan, 2004, or Petersen, Kolen, & 

Hoover, 1989, for a detailed description of the method; see also the description of the process of 

IRT true-score equating). The IRT equating method requires that the tests are number-right scored, 

which is an implicit assumption that there are no omits. This is captured by Assumption 4. 

Assumption 4. IRT equating assumes that there are no omitted responses. 

IRT true-score equating also introduces Assumption 5. 

Assumption 5. The relationship between the true scores generalizes to the observed 

scores. 

Although there is no theoretical reason why Assumption 5 might hold, studies indicate 

that the resulting true-score conversion is similar to the conversion of the observed scores (see 

Kolen & Brennan, 2004, for a discussion of the IRT true-score equating method). 

Hence, the study of the population sensitivity of the IRT true-score equating function 

relies on the five assumptions already given. 
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The observed-score equating functions investigated in this study (chain equipercentile 

and Tucker) also make assumptions in order to overcome the missing-data-by-design condition, 

a feature of the NEAT design. We will not give any computational detail for the two observed-

score equating methods, since they are well known. We give the assumptions for the two 

methods in order to emphasize that all equating methods require some (nontestable) assumptions 

to be fulfilled. The assumptions and the formulas for the chain equipercentile equating function 

and for the Tucker linear equating function are given in Kolen and Brennan (2004); von Davier, 

Holland, and Thayer (2004a, 2004b); and von Davier (2003).  

Assumption 6 (Chain Equating). The linking functions, from X to V and from V to Y, are 

population invariant. 

Assumption 7 (Tucker Equating). The linear regressions of X on V and of Y on V are 

population invariant. The conditional variances of X given V and of Y given V are population 

invariant. 

By looking carefully at the Assumptions 3, 6, and 7, you can see that each use a particular 

type of population invariance assumption. Hence, both the true-score and the observed-score 

equating methods make similar types of assumptions. 

Data 

In this section, we describe the data used to investigate whether the five assumptions for 

achieving the IRT equating function hold.  

The data were from the 2001 and 2003 administrations of the AP Calculus AB exam. In 

these data sets, there were 145,415 examinees in the 2001 administration and 163,142 examinees 

in the 2003 administration. These data contain the examinees who took the regular operational 

forms of the AP Calculus AB exam in 2001 and 2003, respectively. The operational data (i.e., 

the data on which the equating is conducted operationally) contain subsamples from each of 

these larger samples.  

This AP exam uses a NEAT design, with the year 2003 test being linked back to the 2001 

test. The anchor test, V, is an internal anchor within the MC component of the test. The MC 

sections consist of 45 items each; the (internal) anchor has 15 items.  

Each particular AP Calculus AB exam has a composite score, which is a weighted sum of 

scores from MC and FR parts. For the AP Calculus AB exam, the FR section contains six FR 
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items, each with 10 possible score categories (from 0 to 9). Operationally, AP equates only the 

MC scores, not the composite scores. 

For this particular exam, the correlation between the FR and the MC scores was .86 for 

2001 and .87 for 2003. The correlation of the MC scores with the composite was .96 for 2001 

and .97 for 2003. Reliability for the MC scores was .90 for 2001 and .89 for 2003. Reliability for 

the composite scores was .94 for both 2001 and 2003. 

Operationally, the tests were scored using rounded formula scoring. In order to satisfy 

Assumption 4 and achieve the IRT conversion, the data files were rescored with a software 

package (ETS, 2004) using the number-correct scoring method. In this study, we focused only on 

the raw score equating and not on the scale conversion. 

The effect size for the difference between 2003 and 2001 for all examinees is  

(6.58 – 6.30)/3.975 = 0.070, or 7% (3.975 is the average of 4.02 and 3.93). 

The differences reflected in the summary statistics for the common items suggest that the 

examinees from 2003 were slightly more able than those from 2001. See Table 2. 

Table 2 

Summary Statistics of the Observed Frequencies of X and V for a Sample of Examinees From 

Population P and From Population Q for the AP Calculus AB Exam, MC Items Only 

 Total in 2003 (P) Total in 2001 (Q) 
N 163,142 145,415 
 X V V Y 
Mean 19.29  6.58  6.30 18.56 
SD 11.12  4.02  3.93 10.66 
Skewness    .09    .09    .16    .10 
Kurtosis − .90 − .94 − .87 − .85 

The correlation between the test X (MC items only) and (internal) anchor test V in P is 

0.9087, and it is 0.9278 between Y (MC items only) and V in Q.  

Table 3 suggests (also taking into account the information from Table 2 and the high 

correlation between the MC and FR items) that the FR section was more difficult in 2003 than in 

2001 (these are observed data; no equating has been carried out yet). This information suggests 

that we should expect a larger difference between the tests’ characteristic curves (TCCs) when 
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the FR items are included than when only the MC items are investigated, and we should expect 

the IRT equating to adjust for this difference in difficulty (if Assumptions 2 and 3 hold). 

Table 3 

Summary Statistics of the Observed Frequencies of the FR Section for a Sample of Examinees 

from Populations P and Q for the AP Calculus AB Exam 

 FRP  = 2003 FRQ = 2001 
N 163,142 145,415 
N items 6 6 
Mean 17.94 23.55 
SD 11.77 13.47 

IRT True-Score Equating: Assumptions Check  

Since IRT equating is not employed operationally for this assessment, we first checked if 

Assumption 2 holds. This assumption is necessary for applying an IRT model in the equating 

process. (See Cook, Dorans, Eignor, & Petersen, 1985; Cook & Eignor, 1991; Cook & Petersen, 

1987; Jodoin & Davey, 2003; Petersen, Cook, & Stocking, 1983; Petersen, Kolen, & Hoover, 

1989; and Wainer, Thissen, & Wang, 1994, for a detailed discussion of the robustness of the IRT 

equating function.) Although the unidimensionality and local independence assumptions might 

not hold strictly, the IRT models might be robust enough to be used in practical situations (Cook, 

et al., 1985; Cook & Petersen, 1987; Thissen, et al., 1993). We investigated the dimensionality of 

the two tests as well as of the individual anchors (see Hattie, 1985) from different perspectives: 

test construction, as well as characteristics and fit of the IRT models. The several investigations 

were carried out for both datasets from the two administrations. 

Analysis of the Dimensionality of the Tests  

1. We looked carefully at the items: The items in both the MC and the FR sections did 

not share elements (passages, for example) and did not mechanically depend on each 

other. 

2. We checked if the MC and the FR items were intended to measure the same construct 

by consulting the documents available for this exam (see Wainer et al., 1993).  
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3. We determined that the MC and FR correlated highly, as mentioned above (0.86 in 

2001 and 0.87 in 2003). 

4. We used factor analysis to investigate the dimensionality of the tests (MC + FR) 

given to both administrations. Exploratory factor analysis (Browne, Cudeck, 

Tateneni, & Mels, 1999) was carried out (no constraints beyond those required for 

model identification were imposed). The polychoric correlation matrix was estimated. 

The data was assumed to be multivariate normal. The ordinary least square (OLS) 

discrepancy function was minimized. First, 1-factor models were fit to both tests from 

the two administrations. The root mean square error of approximation (RMSEA) 

showed a reasonable good fit for the 1-factor model in both cases. The first 

eigenvalue was 17 in the sample from 2001 and 19 in the sample from 2003 (see the 

scree plots in Figures 1 and 2). The proportions of the variances accounted for by the 

first factor were 17/51 = 0.33 or 33% for the MC + FR in the sample from 2001 and 

19/51= 0.37 or 37% for 2003. Since three eigenvalues were larger than 1 (the Kaiser-

Guttman rule), we considered the issue of fitting at least a 2-factor model (the third 

eigenvalue in both groups was only slightly larger than 1). 

5. For the 2-factor model, the factor-loading matrix was rotated (both orthogonally and 

obliquely) to search for an interpretable solution (simple structure). The results were 

inconclusive. The fit as measured by the RMSEA was slightly better for the 2-factor 

model, but neither loading was interpretable or high enough to support choosing a 2-

factor model. It appears that the items did indeed measure one factor (the first factor 

seems to explain most of the variance).  

6. We investigated if the dimensionality assumption was consistent for the test forms 

(MC + FR) across administrations: For example, the dimensionality of the two test 

forms should also have been similar in the secondary dimensions (see Jodoin & 

Davey, 2003). We found that the same factorial structure existed in the two test 

forms; the same number of eigenvalues larger than 1 existed in both administrations 

and they were of similar size (except the value of the first eigenvalues described 

above; see Figures 1 and 2). 
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Figure 1. Scree plot for the 2001 AP Calculus exam (MC + FR items). 
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Figure 2. Scree plot for the 2003 AP Calculus exam (MC + FR items).

7. Calculus AB includes some items that allow test takers to use a calculator, and some 

items that do not. We did not find any pattern in the factorial structure that is 

consistent with the use of a calculator. 
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8. Calculus AB has two separately timed sections. We did not find any serious 

speededness issues in the last items from each of the two sections. 

9. We checked for evidence of differential item functioning (DIF) in the MC item sets 

and in the FR item sets with respect to the largest subpopulations, males and females 

(see Ackerman, 1992; Dorans & Schmitt, 1991; Holland & Thayer, 1988). We used 

the Mantel-Haenszel index (M-H; Holland & Thayer, 1988) for investigating DIF in 

the MC items and the overall index (PolyStand) for investigating DIF in the FR items 

(Dorans & Tateneni, 1993). There were no DIF items in the common set of items; 

there were some DIF items in the tests; however, the value of the M-H index was low, 

and we didn’t notice any pattern in the sign of those M-H index values. Two items 

showed high DIF values in the FR section; these were also the most difficult items. 

We will look carefully at the fit of the IRT model to these items later in the study. 

Analysis of the Fit of the IRT Model 

1. We fitted the 3PL model to the MC items, and the GPCM to the FR items. We 

investigated the item characteristic curves (ICCs) plots provided by PARSCALE 

(Muraki & Bock, 1997) in GENASYS (ETS, 2004). It appeared that there were no 

outliers among the items in each of the two administrations.  

2. We compared the differences between the item parameter estimates for the MC items 

when calibrated alone with those estimates of the MC item when calibrated together 

with the FR items. The estimates changed slightly, but they were mostly inside the 

plus/minus two standard error band around the estimates from the calibration for the 

MC items only (the standard errors are very small in this situation, where the sample 

sizes are very large). The ICCs for the MC items from the two studies appeared to be 

similar.  

3. We compared the estimates of the parameters of the posterior distribution for the 

ability from the two types of items (the prior distributions for the abilities in the two 

groups were set to be normal distributions, with means 0 and standard deviation 1). 

Again, the changes in the estimates were small (about 0.01 for the means and 0.04 for 

the variances). 
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4. We also investigated the ICCs for the FR items (see an example of the ICC for a FR 

item in Figure 3; the figure shows the probabilities associated with each category and 

the thresholds, denoted with D, for each of the 10 categories). The 10 categories for 

all of the FR items were recovered, and although the fit was not very good for the 

most difficult items (two of them being those that showed DIF), we did not see any 

clear evidence for collapsing categories (especially after considering the findings 

from model fit discussed above).  

5. We looked at the chi-squared values (the only fit measures provided by the available 

software); however, given that the samples were very large, these values were not 

directly relevant. No other fit measures were considered or available. 

The findings from above provide some indication that, indeed, the FR items measured the 

same construct as the MC items (see also the other analyses described above). We concluded that 

Assumption 2 for the IRT model holds well enough for our analysis.  

 

Figure 3. Example of an item characteristic curve for a free response on  

the 2001 AP Calculus exam.  
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In the following paragraph we describe the steps we took to check Assumptions 3 to 5 

and to accomplish the equating. 

Analysis of the Assumptions of the IRT True-Score Equating and Process Description 

1. The 3PL model from (1) was fitted separately to both administrations. A detailed item 

analysis was carried out on all items. We found a few difficult items that had a large 

number of omits (more than 30% of the examinees omitted them), which is not 

surprising for a formula-scored test, particularly in light of the test instructions that 

the examinees received. This implies that Assumption 4 might not hold. 

2. The item parameters from the two estimations on the common item set were 

investigated (see Assumption 3). We plotted the item parameters to look for outliers 

(those items with estimates that do not appear to lie on a straight line). Figures 4 and 

5 show the item parameters, the slope (a) and the difficulty (b-parameters) for the 

first study (MC only), for the calibration for the total population. Figures 6 and 7 

show the respective item parameters for the second study (MC + FR). There were no 

significant changes among the item parameters for the MC common items in the first 

study versus the second study (after including the FR section).  

3. The item parameters were placed on the same scale by the characteristic curve 

method of Stocking and Lord (1983). We also looked at the ICCs for the common 

items, before and after transformation. Only two common items seemed to have a 

larger difference in the ICCs across administration (Figure 8 and Table 4). However, 

the differences were not very large and the differences in the two ICCs for these two 

items had different signs, which implies that the differences were not systematic (i.e., 

the common items were not systematically more difficult, easy, or omitted). 

Therefore, we did not consider the evidence to be strong enough to exclude them 

from the set of the common items. Moreover, the anchor test is relatively short (15 

items); hence, excluding items might create problems in the equating process. A very 

similar pattern for the ICCs for the common items was found when the FR items were 

included. 
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Figure 4. The  a-parameters for the anchor items for the two administrations  

(MC items only). 
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Figure 5. The b-parameters for the anchor items for the two administrations  

(MC items only). 
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Figure 6. The  a-parameters for the anchor items for the two administrations  

(MC + FR items). 
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Figure 7. The b-parameters for the anchor items for the two administrations  

(MC + FR items). 
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Figure 8. ICC plots for common items after scaling (calibration with MC items only).  
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Table 4 

Item Parameters for Common Items After Scaling (Calibration for MC Items Only) 

 Reference form 
parameters (Y) 

Transformed  
parameters (X after scaling) 

Item no. a b c a b c 

  5   .595 –.254 .063 .641 –0.160 .068 
  9   .896   .128 .053 .799   0.355 .062 
10 1.077 –.657 .246 1.168 –0.498 .288 
12   .580 –.930 .226 .600 –0.807 .279 
14   .911 –1.093 .010 .862 –1.127 .007 
19   .823   1.063 .230 .904   1.189 .224 
20 1.030   .976 .234 1.086   1.019 .285 
24 1.033 –.526 .182 .989 –0.355 .200 
25   .781 –.817 .023 .774 –0.733 .028 
30 1.101  1.440 .129 1.123   1.496 .122 
33   .858  1.288 .187 .799   1.342 .181 
35   .794   .903 .100 .762   0.772 .093 
40   .705   .631 .157 .662   0.512 .154 
41   .752   .794 .120 .797   0.432 .118 
43   .898   .013 .167 .894 –0.207 .132 

4. The test characteristic curves (TCCs) for the two tests (after the parameter estimates 

for the two tests were placed on the same scale) were almost on top of each other for 

the MC items only (see Figure 9).  

5. In contrast, for the tests that consisted of MC + FR items, the TCCs for the two tests 

(after the parameter estimates were placed on the same scale) differed from each 

other for almost the entire ability range, with the TCC for test Y (from 2001) being 

above the TCC for test X (from 2003). This suggests that the test given in 2003 was 

more difficult than the one given in 2001 (see Figure 10). This was an expected 

result, considering the information given in Tables 2 and 3. 
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Figure 9. Test characteristic curves for the 2001 and 2003 AP Calculus exam  

(MC items only). 
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Figure 10. Test characteristic curves for the 2001 and 2003 AP Calculus exam  

(MC + FR items). 
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6. The IRT true-score equating was performed. This was done by first looking for the 

corresponding estimated θ value for each estimated true score on the new form, and 

then finding the estimated true score on the old form for that specific estimated θ 

value. Hence, a conversion relationship between the true scores was estimated. 

7. This estimated conversion function was applied to observed scores, as if the estimated 

true scores were identical to the observed scores (see Assumption 5). We used the 

method proposed by Lord (1980) that is implemented in GENASYS (ETS, 2004) to 

produce equivalents for the number-correct scores below the sum of the c-parameters 

estimates. 

8. We used the method proposed by Lord (1980) that is implemented in GENASYS 

(ETS, 2004) to produce equivalents for the number-correct scores below the sum of 

the c-parameters estimates. 

9. The conversion function obtained for the MC items is plotted in Figure 11 and seems 

to be almost linear. The conversion function obtained for the MC + FR items is 

shown in Figure 12, and it is clearly nonlinear. It seems that the IRT equating 

appropriately adjusts for the difference in difficulty in the FR sections across the two 

administrations. 

Figure 12 plots the IRT conversion line for MC + FR items, which is obviously 

nonlinear, reflecting the differences in the distributions of the two tests (due to the differences in 

difficulty in the FR items sections). 

Comparison of True- and Observed-Score Equating Results 

In order to compare the equating results from the IRT approach with the equating results 

from the traditional methods, we use the difference that matters (DTM) value as a reference. 

Dorans and Feigenbaum (1994) and Dorans, Holland, Thayer, and Tateneni (2003) use 

the notion of a difference that matters in score reporting. The DTM for a particular exam 

depends on the reporting scale. In AP there are two metrics of interest: the composite score 

metric and the AP grade scale. The scale that we used in this study for reference was the 

composite score metric (although we used the same weight, of 1, for the MC items as for the FR 

items in forming the composite). The unit of this score scale is one point. Hence, a difference 
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between equating functions larger than a half point on this scale means a change in the reporting 

score; therefore, it defines the DTM for this particular exam and for our studies. All the equating 

results were compared to the DTM of a half point in this study. 
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Figure 11. The IRT conversion (MC items only). 

AP Calculus AB - Multiple Choice and Free Response
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Figure 12. The IRT conversion (MC + FR items). 
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Figure 13 shows the differences between the equating results for Tucker, IRT, and chain 

equipercentile methods. We see that there are two score points (42 and 43 for the difference 

between the Tucker and the chain methods, and 44 and 45 for the difference between the Tucker 

and the IRT methods) where the differences exceed a DTM of 0.5. We also note that the 

differences between the Tucker and the chain functions seem to be smaller than those between 

the Tucker and the IRT functions for most of the score points. Given that the two samples from 

the two populations do not differ too much in ability as measured by the anchor, we expect the 

observed-score linear functions to agree with each other and the observed-score nonlinear 

functions to agree with each other; unfortunately, for this case, we only had one linear and one 

nonlinear observed-score function, each of them requiring different assumptions (Assumptions 6 

and 7). The two observed-score equating functions slightly disagreed. This disagreement was due 

to the differences in shapes of the tests in the two administrations (see Table 2). However, the 

IRT and the chain equipercentile agreed very well for most of the score range, and displayed 

large disagreement only at the highest score points, where IRT tends to give higher scores than 

the chain equipercentile. It appears that all methods disagreed at the higher scores. 

Equating Differences
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Figure 13. Equating differences between functions (Tucker, IRT,  

and chain equipercentile functions; MC items only). 
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Discussion and Conclusions 

This study provides a discussion of the assumptions required by the IRT models, the item 

calibration procedure, and IRT true-score equating method in a NEAT design and a step-by-step 

check of how well these assumptions are met in the data set at hand. In addition, two sets of 

analyses were conducted: one where only the MC section was investigated and one where both 

the MC and the FR sections were considered. In both cases, the anchor was internal and 

consisted of MC items only. Usually, practitioners construct the set of common items to be a 

miniature, in content and statistical properties, of the test forms to be equated. In this study, the 

available anchor set consisted only of MC items and was relatively short. These limitations of the 

anchor restrict the implications of the results. 

This study concludes that, for this particular data set, the IRT true-score equating method 

might be an appropriate equating method: The IRT models fit the data to an acceptable degree 

and the IRT function appropriately adjusts for the difference in difficulty in the FR items across 

administrations. By looking carefully at the Assumptions 3, 6, and 7, we can see that they are all 

particular types of population invariance assumptions. Hence, both the true-score and the 

observed-score equating methods make similar types of assumptions.  
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